Enquête annuelle sur les industries de services: publicité et services connexes (PUBLI)

Information détaillée pour 2017

Statut :

Active

Fréquence :

Annuelle

Numéro d'enregistrement :

2437

Cette enquête sert à recueillir les données financières et les données d'exploitation nécessaires à l'élaboration des politiques et des programmes économiques nationaux et régionaux.

Date de la parution - 18 janvier 2019

Aperçu

Cette enquête-échantillon annuelle sert à recueillir les données requises pour produire des statistiques économiques sur l'industrie de publicité et services connexes au Canada.

Les données recueillies auprès des entreprises sont regroupées avec l'information provenant d'autres sources pour produire des estimations officielles de la production économique nationale et provinciale pour cette industrie.

Les estimations de l'enquête sont disponibles pour les entreprises, les gouvernements, les investisseurs, les associations et le public. Les données sont utilisées pour surveiller la croissance de l'industrie, mesurer le rendement et faire des comparaisons avec d'autres sources de données afin de mieux comprendre cette industrie.

Activité statistique

L'enquête est menée dans le cadre du Programme intégré de la statistique des entreprises (PISE). Le PISE a été conçu pour intégrer les quelque 200 enquêtes auprès des entreprises dans un même programme d'enquête principal. Le PISE vise à recueillir des données sur les industries et les produits à l'échelle provinciale, tout en évitant les chevauchements entre les différents questionnaires d'enquête. Les questionnaires d'enquête auprès des entreprises ainsi remaniés ont une présentation, une structure et un contenu harmonisé.

L'approche intégrée rend la déclaration plus facile pour les entreprises ayant des activités dans différentes industries, puisqu'elles peuvent ainsi fournir des renseignements similaires pour chaque succursale. Elles n'ont ainsi pas à remplir des questionnaires dont la présentation, le libellé et même les concepts changent d'une industrie à l'autre. Les résultats combinés donnent des statistiques économiques plus cohérentes et précises.

Cette enquête fait partie du Programme des industries de service. Les données recueillies permettent de compiler des statistiques agrégées pour plus de trente groupes d'industries de services. Il existe des statistiques financières portant notamment sur les revenus, les dépenses et les profits pour toutes les enquêtes faisant partie de ce programme. En outre, plusieurs enquêtes permettent de compiler et de diffuser des données propres à une industrie.

Période de référence : L'année civile ou l'exercice financier de 12 mois dont le dernier jour se situe entre le 1er avril de l'année de référence et le 31 mars de l'année suivante

Période de collecte : Avril à septembre de l'année suivant la période de référence

Sujets

  • États financiers et rendement
  • Rendement des entreprises et propriété
  • Services aux entreprises, aux consommateurs et liés à la propriété
  • Services professionnels, scientifiques et techniques

Sources de données et méthodologie

Population cible

La population cible est constituée de tous les établissements considérés comme faisant partie de l'industrie de publicité et services connexes (code 5418 - Publicité, relations publiques et services connexes) selon le Système de classification des industries de l'Amérique du Nord (SCIAN) 2017 au cours de l'année de référence.

La population observée est constituée de tous les établissements considérés comme faisant partie de l'industrie de publicité et services connexes (code 5418 - Publicité, relations publiques et services connexes) selon le SCIAN 2017 trouvés dans le Registre des entreprises de Statistique Canada en date du dernier jour de l'année de référence (y compris les établissements actifs durant une partie de l'année de référence).

Élaboration de l'instrument

Le questionnaire d'enquête contient des modules génériques qui ont été conçus afin de couvrir plusieurs industries de services, par exemple les modules portant sur les revenus et les dépenses.

Afin de réduire le fardeau de réponse, la plupart des entreprises reçoivent un questionnaire (version abrégée) portant sur les caractéristiques propres à leur industrie et qui ne comprend pas les modules portant sur les revenus et les dépenses. Cette version abrégée est conçue pour recueillir des données sur les caractéristiques financières et non financières alors que les données sur les revenus et les dépenses sont tirées de fichiers administratifs.

Échantillonnage

Il s'agit d'une enquête transversale par échantillon.

Le Registre des entreprises est une base de données sur la population des entreprises canadiennes. Statistique Canada l'a créé principalement pour établir les bases de sondage de ses enquêtes économiques. Il a été conçu de manière à faciliter la coordination de la couverture des enquêtes auprès des entreprises ainsi qu'à uniformiser la classification des unités déclarantes. Le registre permet également de rassembler des données sur les entreprises (caractéristiques, durée de vie, etc.).

Les nouvelles données recueillies dans le cadre du programme d'enquêtes de Statistique Canada ainsi que les fichiers du numéro d'entreprise de l'Agence de revenu du Canada (ARC) sont les principales sources d'information du Registre des entreprises. Grâce aux données administratives de l'ARC, on peut créer l'univers de toutes les entités commerciales.

Les données fournies dans nos produits font état du nombre d'emplacements statistiques selon l'activité (Système de classification des industries de l'Amérique du Nord), les codes de classification géographique et les tranches d'effectif.

UNITÉ D'ÉCHANTILLONNAGE
L'unité d'échantillonnage est l'entreprise, telle qu'elle est définie dans le Registre des entreprises.

MÉTHODE DE STRATIFICATION
Avant la sélection d'un échantillon aléatoire, les entreprises sont classées dans des groupes homogènes (c.-à-d. des groupes ayant le même code SCIAN, la même zone géographique [province/territoire]) formés selon les caractéristiques de leurs établissements. Ensuite, chaque groupe est divisé en sous-groupes (petit, moyen, grand) qu'on appelle les strates, en fonction de leur revenu d'entreprise annuel.

ÉCHANTILLONNAGE ET SOUS-ÉCHANTILLONNAGE
Suite à la stratification, un échantillon d'une taille prédéterminée est réparti dans chaque strate. L'objectif est d'optimiser la qualité générale de l'enquête tout en respectant les ressources disponibles. La répartition de l'échantillon peut donner lieu à deux types de strates : des strates à tirage complet, où l'échantillonnage de toutes les unités est certain, et des strates à tirage partiel, où la sélection des unités échantillonnées se fait de manière aléatoire.

La taille totale de l'échantillon pour l'enquête est d'environ 829 entreprises.

Sources des données

Collecte des données pour cette période de référence : 2018-04-27 à 2018-09-28

Il s'agit d'une enquête à participation obligatoire.

Les données sont obtenues directement auprès des répondants et sont tirées de fichiers administratifs.

Les données sont recueillies principalement au moyen d'un questionnaire électronique auquel il est possible de répondre dans l'une ou l'autre des deux langues officielles. Les répondants ont également la possibilité de recevoir un questionnaire papier, de répondre par interview téléphonique ou par d'autres méthodes de production électronique. En l'absence de réponse, un suivi est effectué au moyen de courriels, d'appels téléphoniques ou par télécopieur. Ce suivi des non-répondants est dynamique et les priorités sont déterminées en fonction de maximiser les taux de réponse pondérés. Lorsque le suivi est fait pour valider les données recueillies, la priorisation est effectuée en fonction des écarts avec les valeurs attendues.

Données administratives

Une stratégie de remplacement des données d'enquête par des données fiscales a été instaurée afin de réduire le fardeau de réponse et les coûts d'enquête. Cette stratégie consiste à utiliser des données fiscales plutôt que des données d'enquête pour la plupart des unités simples (par exemple un seul emplacement et une seule activité).

Dans le cadre du Programme intégré de la statistique des entreprises (PISE), les données fiscales des formulaires T1 pour les entreprises non constituées en société et celles des formulaires T2 pour les entreprises constituées en société sont utilisées. Le remplacement de données peut être effectué afin de corriger des valeurs aberrantes ou remplacer des données manquantes, soit partielles ou complètes. Les données fiscales peuvent également servir au rapprochement des données d'enquête.

L'intégration des données permet de combiner les données provenant de multiples sources de données, y compris les données d'enquête recueillies auprès des répondants, les données administratives de l'Agence du revenu du Canada et d'autres formes de données auxiliaires, le cas échéant. Au cours du processus d'intégration, les données sont importées, transformées, validées, agrégées et couplées à partir des différents fournisseurs de données, selon les formats, les structures et les niveaux requis pour être traitées par le PISE. Les données administratives sont utilisées dans le cadre d'une stratégie de remplacement des données pour un grand nombre de variables financières pour la plupart des petites et moyennes entreprises, ainsi qu'un groupe restreint de grandes entreprises, afin d'éviter la collecte des données de ces variables. Les données administratives sont également utilisées comme source de données auxiliaire pour la vérification et l'imputation lorsqu'il manque des données sur les répondants.

Voir le(s) Questionnaire(s) et guide(s) de déclaration .

Détection des erreurs

La détection des erreurs fait partie intégrante des activités de collecte et de traitement des données. Des règles de validation automatisées sont appliquées aux enregistrements de données durant la collecte afin de repérer les erreurs de déclaration et de saisie. Ces règles permettent de repérer les erreurs potentielles d'après les variations d'une année à l'autre des variables clés, des totaux et des ratios qui dépassent les seuils de tolérance, ainsi que les problèmes de cohérence des données recueillies (p. ex. le total d'une variable n'est pas égal à la somme de ses parties). D'autres règles de validation sont utilisées durant le traitement des données afin de détecter automatiquement les erreurs ou les incohérences qui subsistent après la collecte. Ces règles comprennent les contrôles de valeurs (p. ex. Valeur > 0, Valeur > -500, Valeur = 0), les contrôles d'égalité linéaire (p. ex. Valeur1 + Valeur2 = Valeur Totale), les contrôles d'inégalité linéaire (p. ex. Valeur1 >= Valeur2) et les contrôles d'équivalence (p. ex. Valeur1 = Valeur2). Les erreurs repérées peuvent être corrigées en suivant le processus de suivi des questionnaires rejetés au contrôle durant la collecte ou par imputation. Les valeurs extrêmes sont aussi signalées comme étant des valeurs aberrantes, au moyen de méthodes automatisées fondées sur la répartition des renseignements recueillis. Les valeurs détectées font ensuite l'objet d'un examen visant à en évaluer la fiabilité. L'examen manuel d'autres unités peut entraîner la détection d'autres valeurs aberrantes. Ces valeurs sont exclues du calcul des ratios et des tendances utilisés pour l'imputation et durant l'imputation par donneur. En général, tous les efforts ont été déployés pour réduire les erreurs non dues à l'échantillonnage, à savoir les erreurs d'omission, de dédoublement, de classification erronée, de déclaration et de traitement.

Imputation

En cas de données fiscales non déclarées, ou lorsque les données déclarées sont jugées incorrectes à l'étape de détection des erreurs, l'imputation est utilisée pour entrer les renseignements manquants et corriger les renseignements incorrects. De nombreuses méthodes d'imputation peuvent être utilisées pour compléter les données administratives, notamment des modifications manuelles apportées par un analyste. Les techniques statistiques automatisées employées pour imputer les données manquantes comprennent l'imputation déterministe, le remplacement par des données historiques (avec calcul de tendance, s'il y a lieu), le remplacement par des renseignements auxiliaires obtenus auprès d'autres sources, le remplacement fondé sur les relations connues entre les données pour l'unité échantillonnée et le remplacement par des données tirées d'une unité semblable de l'échantillon (appelé imputation par donneur). En général, les variables clés sont imputées en premier; elles sont ensuite utilisées aux étapes subséquentes pour imputer d'autres variables connexes.

L'imputation permet de produire un fichier de microdonnées complet et cohérent qui couvre toutes les variables d'enquête.

Estimation

L'échantillon utilisé pour l'estimation résulte d'un processus d'échantillonnage à une phase. Un poids d'échantillonnage initial (le poids déterminé par le plan d'échantillonnage) est calculé pour chaque unité de l'enquête et correspond simplement à l'inverse de la probabilité de sélection qui est conditionnelle à la taille d'échantillon réalisée. Le poids calculé pour chaque unité d'échantillonnage indique combien d'autres unités elle représente. Les poids finaux sont habituellement égaux ou supérieurs à un. Les unités d'échantillonnage à tirage complet (aussi appelées unités choisies avec certitude) ont un poids d'échantillonnage de 1 et ne représentent qu'elles-mêmes.

L'estimation des totaux se fait au moyen d'une simple agrégation des valeurs pondérées de toutes les unités d'estimation qui se trouvent dans le domaine d'estimation. Les estimations sont calculées pour plusieurs domaines d'estimation tels que les groupes industriels et les provinces ou les territoires, en se fondant sur les données de classification les plus récentes disponibles pour l'unité d'estimation et la période de référence de l'enquête. Il est à noter que ces données de classification peuvent différer de la classification initiale utilisée à l'échantillonnage parce que la taille, l'industrie ou l'emplacement pourraient avoir changé dans les enregistrements. Les changements de classification sont immédiatement pris en compte dans les estimations.

La répartition des données est nécessaire lorsque certaines entreprises déclarent leurs données en regroupant un grand nombre d'unités situées dans plus d'une province ou d'un territoire ou appartenant à plus d'une catégorie industrielle dans la classification. Les facteurs fondés sur l'information provenant de sources telles que les fichiers de données fiscales et les profils du Registre des entreprises sont utilisés afin de répartir les données déclarées dans le rapport combiné entre les différentes unités d'estimation où l'entreprise exerce ses activités. Les caractéristiques des unités d'estimation sont utilisées pour dériver les domaines d'estimation, y compris la classification des industries et la région géographique.

Les unités dont la taille est plus grande que prévu sont considérées comme étant mal classées et leur poids est ajusté afin qu'elles ne représentent qu'elles-mêmes (par exemple, les grandes unités se retrouvant dans une strate de petites unités).

Les poids peuvent être modifiés et corrigés au moyen des renseignements à jour tirés des données fiscales. Une technique statistique appelée calage est utilisée pour ajuster l'ensemble final de poids de manière à ce que l'échantillon représente le plus fidèlement possible les données fiscales de la population de l'industrie.

Évaluation de la qualité

Avant la publication, les résultats combinés de l'enquête sont analysés afin d'en évaluer la comparabilité. Il s'agit généralement d'un examen détaillé des réponses individuelles (particulièrement pour les grandes entreprises), de la conjoncture économique générale, de la cohérence avec les résultats des indicateurs économiques connexes, des tendances historiques et des renseignements provenant d'autres sources externes (p. ex. associations, publications spécialisées ou articles de journaux).

Contrôle de la divulgation

La loi interdit à Statistique Canada de divulguer toute information recueillie qui pourrait dévoiler l'identité d'une personne, d'une entreprise ou d'un organisme sans leur permission ou sans y être autorisé par la Loi sur la statistique. Diverses règles de confidentialité s'appliquent à toutes les données diffusées ou publiées afin d'empêcher la publication ou la divulgation de toute information jugée confidentielle. Au besoin, des données sont supprimées pour empêcher la divulgation directe ou par recoupements de données reconnaissables.

Afin de prévenir toute divulgation de données, une analyse de confidentialité est faite au moyen du Système généralisé de contrôle de la divulgation (G-Confid) de Statistique Canada. G-Confid est utilisé pour la suppression primaire (divulgation directe), ainsi que pour la suppression secondaire (divulgation par recoupements). Il y a divulgation directe lorsque la valeur dans une cellule de totalisation se compose de peu de déclarants ou que la cellule est dominée par quelques entreprises. Il y a divulgation par recoupements lorsque des renseignements confidentiels peuvent être extraits indirectement en rassemblant des renseignements provenant de différentes sources ou séries de données.

Révisions et désaisonnalisation

Il n'y a pas de désaisonnalisation. Les données historiques pourraient être révisées en fonction de renseignements plus à jour.

Exactitude des données

La méthodologie de l'enquête a pour objectif de contrôler les erreurs et de réduire leurs effets éventuels sur les estimations. Les résultats de l'enquête peuvent néanmoins contenir des erreurs dont l'erreur d'échantillonnage n'est que l'une des composantes. L'erreur d'échantillonnage survient lorsque les observations sont faites uniquement sur un échantillon et non sur l'ensemble de la population. Toutes les autres erreurs commises aux diverses phases de l'enquête sont appelées erreurs non dues à l'échantillonnage.

Des erreurs de ce type peuvent survenir, par exemple, quand un répondant fournit des renseignements erronés ou qu'il ne répond pas à certaines questions; quand une unité du champ de l'enquête y est incluse erronément ou que des erreurs sont commises lors du traitement des données, comme des erreurs de codage ou de saisie.

Avant la publication, on analyse les résultats combinés de l'enquête afin d'en évaluer la comparabilité; il s'agit généralement d'un examen détaillé des réponses individuelles (particulièrement celles des grandes entreprises), de la conjoncture économique générale et des tendances historiques.

Une mesure habituelle de la qualité des données des enquêtes est le coefficient de variation (CV). Le coefficient de variation, défini comme étant l'erreur-type divisée par l'estimation d'échantillon, est une mesure de la précision relative. Puisque le coefficient de variation est calculé d'après les réponses des unités individuelles, il mesure aussi certaines erreurs non dues à l'échantillonnage.

La formule utilisée pour calculer le coefficient de variation (CV) en pourcentage est :

CV (X) = S(X) * 100 % / X
où X représente l'estimation et S(X) représente l'erreur-type de X.

On peut construire les intervalles de confiance autour des estimations en utilisant l'estimation et le CV. Donc, pour notre échantillon, il est possible de déclarer avec un niveau donné de confiance que la valeur prévue sera comprise dans l'intervalle de confiance construit autour de l'estimation. Par exemple, si une estimation de 12 000 000 $ à un CV de 2 %, l'erreur-type sera de 240 000 $ (l'estimation multipliée par le CV). On peut déclarer avec 68 % de confiance que les valeurs prévues seront comprises dans l'intervalle dont la longueur est égale à un écart type de part et d'autre de l'estimation, c'est-à-dire entre 11 760 000 $ et 12 240 000 $.

Ou bien, nous pouvons déclarer avec 95 % de confiance que la valeur prévue sera comprise dans l'intervalle dont la longueur est égale à deux écarts types de part et d'autre de l'estimation, c'est-à-dire entre 11 520 000 $ et 12 480 000 $.

Enfin, étant donné la faible contribution de la partie non observée de la population aux estimations totales, le biais dans la partie non observée a un effet négligeable sur les CV. Par conséquent, on utilise le CV provenant de la partie observée pour l'estimation totale qui est égale à la somme des estimations pour les parties observée et non observée de la population.

TAUX DE RÉPONSE
Le taux de réponse pondéré à la collecte est de 83,03 %.

ERREUR NON DUE À L'ÉCHANTILLONNAGE
Les erreurs non dues à l'échantillonnage ne sont pas liées à l'échantillonnage et peuvent survenir pour différentes raisons au cours de la collecte et du traitement des données. La non-réponse, par exemple, est une source importante d'erreurs non dues à l'échantillonnage. Le sous dénombrement ou le surdénombrement de la population, les écarts dans l'interprétation des questions ainsi que les erreurs d'enregistrement, de codage et de traitement des données sont d'autres exemples d'erreurs non dues à l'échantillonnage.

BIAIS DE NON-RÉPONSE
Dans la mesure du possible, ces erreurs sont réduites au minimum par la conception minutieuse du questionnaire d'enquête, la vérification des données de l'enquête et le suivi auprès des non-répondants afin de maximiser les taux de réponse.

De plus, lorsqu'il y a de la non-réponse, celle-ci est prise en compte et la qualité est réduite en fonction de son importance dans l'estimation. Sont aussi fournis d'autres indicateurs de la qualité tels que le taux de réponse.

ERREUR DE COUVERTURE
Les erreurs de couverture comprennent les omissions, les inclusions erronées, les doubles comptes et les erreurs de classification des unités dans la base de sondage.

Le Registre des entreprises (RE) est la base de sondage commune de toutes les enquêtes du Programme intégré de la statistique des entreprises (PISE). Le RE est un centre de service de données mis à jour à l'aide de plusieurs sources, notamment les fichiers de données administratives, les commentaires reçus dans le cadre des enquêtes-entreprises de Statistique Canada, et les activités d'établissement de profils, qui comprennent un contact direct avec les entreprises pour obtenir des renseignements sur leurs activités, ainsi que les résultats de recherche sur Internet. L'utilisation du RE assure la qualité, tout en évitant les chevauchements entre les enquêtes et en allégeant le fardeau de réponse le plus possible.

Date de modification :