General Social Survey - Caregiving and Care Receiving (GSS)

Detailed information for 2018 (Cycle 32)




Every 5 years

Record number:


The two primary objectives of the General Social Survey (GSS) are: to gather data on social trends in order to monitor changes in the living conditions and well being of Canadians over time; and to provide information on specific social policy issues of current or emerging interest.

The purpose of this survey is to provide a snapshot of the lives of caregivers and care receivers in today's Canada.

Data release - January 8, 2020 (First in a series of releases for this reference period.)


This survey collects information on Canadians who provide care to family and friends with a long-term health condition, physical or mental disability or problems related to aging. The survey also covers individuals who receive this care and about the challenges both groups face. Data from this survey will help us to better understand the needs and challenges confronting these Canadians, and allow policy makers to design programs that meet their needs.

Questions in the survey cover the types and amount of care family caregivers provide, the kinds and amounts of care Canadians receive, and the unmet needs of those who need care but are not receiving it. An expanded set of questions covers the impact of caregiving on various aspects of the lives of caregivers. Respondents are also asked questions about their overall health, employment, housing and other socio-demographic characteristics such as birth place, religion and language.

Results from this survey will be used by analysts and researchers to study current situations and trends, and by many government departments to develop policies and programs that can have an impact on individuals who receive care, their families, those who provide care, and those who may need or provide care in the future.

Statistical activity

This record is part of the General Social Survey (GSS) program. The GSS originated in 1985. Each survey contains a core topic, focus or exploratory questions and a standard set of socio-demographic questions used for classification. More recent cycles have also included some qualitative questions, which explore intentions and perceptions.


  • Care and social support
  • Disability
  • Health and well-being
  • Society and community

Data sources and methodology

Target population

The target population for the 2018 General Social Survey is all non-institutionalized persons 15 years of age or older, living in the 10 provinces of Canada.

Instrument design

The questionnaire was designed based on research and extensive consultations with data users. Qualitative testing, conducted by Statistics Canada's Questionnaire Design Resource Center (QDRC), was carried out, with respondents in Ottawa, who were screened in based on representative criteria. Questions which worked well and others that needed clarification or redesign were highlighted. QDRC staff compiled a detailed report of the results along with their recommendations. All comments and feedback from qualitative testing were carefully considered and incorporated into the survey whenever possible.


This is a sample survey with a cross-sectional design.

This survey uses a frame that combines landline and cellular telephone numbers from the Census and various administrative sources with Statistics Canada's dwelling frame. Records on the frame are groups of one or several telephone numbers associated with the same address (or single telephone number in the case a link between a telephone number and an address could not be established). This sampling frame is used to obtain a better coverage of households with a telephone number.

The sample is based on a stratified design employing probability sampling. The stratification is done at the province/census metropolitan area (CMA) level. Information is collected from one randomly selected household member aged 15 or older, and proxy responses are permitted. Due to the potential difficulties in reaching caregivers or care receivers as a result of their relatively low prevalence in the population, an approach called 'rejective sampling' was chosen as part of the sample design.

Sampling Unit:
GSS uses a two-stage sampling design. The sampling units are the groups of telephone numbers. The final stage units are individuals within the identified households. Note that GSS only selects one eligible person per household to be interviewed.

Stratification method:
In order to carry out sampling, the 10 provinces of the target population are divided into strata (i.e. geographic areas). Many of the Census Metropolitan Areas (CMAs) are each considered separate strata. This was the case for St. John's, Halifax, Saint John, Montreal, Quebec City, Toronto, Ottawa (Ontario part of Ottawa - Gatineau CMA), Hamilton, Winnipeg, Regina, Saskatoon, Calgary, Edmonton and Vancouver. CMAs not on this list are located in New Brunswick, Quebec, Ontario and British Columbia. For Quebec, Ontario and British Columbia, three more strata were formed by grouping the remaining CMAs in each of these three provinces (Québec part of Ottawa - Gatineau CMA of is in Quebec-Other-CMAs). Next, the non-CMA areas of each of the 10 provinces were grouped to form 10 more strata. Moncton is included with the non-CMA group for New Brunswick. This resulted in 27 strata in all.

Sampling and sub-sampling:
For each province, minimum sample sizes were determined that would ensure certain estimates would have acceptable sampling variability at the stratum level. Once these stratum sample size targets had been met, the remaining sample was allocated to the strata in a way that balanced the need for precision of both national-level and stratum-level estimates. This sample was representative of all households in the 10 provinces.

A field sample of approximatively 63,000 units was used. Among them, about 48,000 invitation letters were sent to selected households across Canada. A completion of 20,000 questionnaires was expected.

Data sources

Data collection for this reference period: 2018-04-03 to 2018-12-28

Responding to this survey is voluntary.

Data are collected directly from survey respondents.

Data were collected using either a respondent self-completed questionnaire or using an interviewer administered questionnaire. Contact was first made by mail for households for which an address is available. Other households were contacted via telephone only.

Proxy interviews were permitted over the phone in cases where the selected respondent did not speak either of the official languages or where the respondent was not able to take part in the survey because of health reasons.

Tax derived files - Canadian Statistical Demographic Database (CSDD):
Questions relating to income show rather high non-response rates, the incomes reported by respondents are usually rough estimates. Linking allows getting such information without having to ask questions.

The information collected during the 2018 GSS (Cycle 32) has been linked to the personal tax records (T1, T1FF or T4) of respondents. Household information (address, postal code, and telephone number) and respondent's information (social insurance number, surname, name, date of birth/age, sex) are key variables for the linkage.

Respondents were notified of the planned linkage before and during the survey. Any respondents who objected to the linkage of their data had their objections recorded, and no linkage to their tax data took place.

View the Questionnaire(s) and reporting guide(s) .

Error detection

All responses to the 2018 General Social Survey were captured directly in the electronic questionnaire application (EQ), both for the interviewer-led (iEQ) component and the respondent self-reporting (rEQ) component. The EQ application, just like any other computerized questionnaire, reduces processing time and costs associated with data entry, transcription errors and data transmission.

The survey was processed using the Social Survey Processing Environment (SSPE) set of generalized processing steps and utilities which allow subject matter and survey support staff to specify and process the data in a timely fashion with high quality outputs. This structured environment is used to monitor the processing steps ensuring best practices and harmonized business processes are followed.

Automatic and manual edits are applied at various stages of processing both at the macro and micro levels. They include household relationship consistency edits and question coherence edits that are applied according to the questionnaire logic. Household relationships were checked to ensure the integrity of household members' relationship to the selected respondent. Question coherence or flow edits were used to ensure respondents followed the correct path and avoid "off-path" situations. Additional coherence checks were done to ensure the consistency of survey data among questions. For example, the comparison of respondent provided age against respondent date of birth.


In 2018, personal income questions were not asked as part of the survey. Income information was obtained instead through a linkage to tax data for respondents who did not object to this linkage. Income information was obtained from the 2017 T1FF for 86.0% of the respondents. Missing information for all other respondents was imputed. Since the 2016 GSS, the family income (i.e., linking directly to a variable on the T1FF that corresponds to the census family income) is used instead of the household income. In total, a family income value was obtained for 86.0% of households for GSS 2018.


When a probability sample is used, as was the case for this survey, the principle behind estimation is that each person selected in the sample represents (in addition to himself/herself) several other persons not in the sample. For example, in a simple random sample of 2% of the population, each person in the sample represents 50 persons in the population (himself/herself and 49 others). The number of persons represented by a given respondent is usually known as the weight or weighting factor.

The 2018 GSS is a survey of individuals and the analytic files contain questionnaire responses and associated information from the respondents.

A weighting factor is available on the microdata file:

WGHT_PER: This is the basic weighting factor for analysis at the person level, i.e. to calculate estimates of the number of persons (non-institutionalized and aged 15 or over) having one or several given characteristics.

In addition to the estimation weights, bootstrap weights have been created for the purpose of design-based variance estimation.

Estimates based on the survey data are also adjusted (by weighting) so that they are representative of the target population with regard to certain characteristics (each month we have independent estimates for various age-sex groups by province). To the extent that the characteristics are correlated with those independent estimates, this adjustment can improve the precision of estimates.

Quality evaluation

While rigorous quality assurance mechanisms are applied across all steps of the statistical process, validation and scrutiny of the data by statisticians are the ultimate quality checks prior to dissemination. Many validation measures were implemented. They include:

a. Analysis of changes over time;
b. Verification of estimates through cross-tabulations;
c. Confrontation with other similar sources of data.

The 2018 GSS on Caregivers and Care Receivers offered for the first time an Internet option to survey respondents. This new approach to data collection was in recognition of the need to adapt to the changing use of technology and the ever present demands on Canadians' time. By having both telephone and Internet modes of data collection, the 2018 GSS offered survey respondents greater flexibility and convenience in providing key and vital information to Statistics Canada. It is important to point out that any significant change in survey methodology can affect the comparability of the data over time. It is impossible to determine with certainty whether, and to what extent, differences in a variable are attributable to an actual change in the population or to changes in the survey methodology. However, there are reasons to believe that the use of an electronic questionnaire might have an impact of the estimations. At every stage of processing, verification and dissemination, considerable effort was made to produce data that are as precise in their level of detail, and to ensure that the published estimates are of good quality in keeping with Statistics Canada standards.

Disclosure control

Statistics Canada is prohibited by law from releasing any information it collects which could identify any person, business, or organization, unless consent has been given by the respondent or as permitted by the Statistics Act. Various confidentiality rules are applied to all data that are released or published to prevent the publication or disclosure of any information deemed confidential. If necessary, data are suppressed to prevent direct or residual disclosure of identifiable data.

For micro data: content is reduced and modified. For tabular data: sensitive cells correction methods such as cell collapsing and suppression are applied.

Revisions and seasonal adjustment

This methodology does not apply to this survey program.

Data accuracy

As the data are based on a sample of persons, they are subject to sampling error. That is, estimates based on a sample will vary from sample to sample, and typically they will be different from the results that would have been obtained from a complete census. More precise estimates of the sampling variability of estimates can be produced with the bootstrap method using bootstrap weights that have been created for this survey. The bootstrap method was used to estimate the sampling variability for all of the estimates produced based on the data from 2018 GSS. Estimates with high sampling variability are indicated in this publication and all of the highlighted differences between subgroups of the population are significant at the 95% level.

Response rate:
The overall response rate is 52.8%.

Non-sampling error:
Common sources of these errors are imperfect coverage and non-response. Coverage errors (or imperfect coverage) arise when there are differences between the target population and the surveyed population. Households without telephones, as well as households with telephone services not covered by the current frame, represent a part of the target population that was excluded from the surveyed population. To the extent that the excluded population differs from the rest of the target population, the results may be biased. In general, since these exclusions are small, one would expect the biases introduced to be small. Non-response could occur at several stages in this survey. There were two stages of information collection: at the household level and at the individual level. Some non-response occurred at the household level, and some at the individual level. Survey estimates are adjusted (i.e. weighted) to account for non-response cases. Other types of non-sampling errors can include response errors and processing errors.

Non-response bias:
The main method used to reduce nonresponse bias involved a series of adjustments to the survey weights to account for nonresponse as much as possible. For the 2018 GSS, an additional adjustment was added where basic characteristics of non-responding households, such as income and household composition, were extracted from administrative sources and then used to model and adjust nonresponse.

Coverage error:
The frame for GSS was created using several linked sources, such as the Census, administrative data and billing files. Coverage was improved (over coverage and under coverage may still exist) if we compare it to the random digit dialing strategies used in the past. All respondents in the 10 provinces were interviewed by telephone or self-completed an electronic questionnaire. Households without telephones were therefore excluded from the survey population. Survey estimates were adjusted (weighted) to represent all persons in the target population, including those not covered by the survey frame.

Other non-sampling errors:
For the 2018 GSS significant effort was made to minimize bias by using a well-tested questionnaire, a proven methodology, specialized interviewers and strict quality control.


Date modified: