Survey of Service Industries: Motion Picture Theatres (THEA)
Detailed information for 2016
Status:
Active
Frequency:
Every 2 years
Record number:
2416
This survey collects the financial and operating data needed to develop national and regional economic policies and programs.
Data release - November 27, 2017
Description
This survey collects data required to produce economic statistics for the Motion Picture Theatres industry in Canada.
Statistical activity
This survey is part of the Service Industries Program. The survey data gathered are used to compile aggregate statistics for over thirty service industry groupings. Financial data, including revenue, expense and profit statistics are available for all of the surveys in the program. In addition, many compile and disseminate industry-specific information.
Reference period: Calendar year
Subjects
- Business, consumer and property services
- Business performance and ownership
- Culture and leisure
- Film and video
- Financial statements and performance
- Information and culture
Data sources and methodology
Target population
The target population consists of all establishments classified to the Motion Picture Theatres industry (NAICS 51213) according to the North American Industry Classification System 2012 (NAICS 2012) during the reference year. This industry comprises establishments primarily engaged in exhibiting motion pictures. Establishments primarily engaged in providing occasional motion picture exhibition services, such as those provided during film festivals, are also included.
The observed population consists of all establishments classified to the Motion Picture Theatres industry (NAICS 51213) according to the North American Industry Classification System (NAICS 2012) found on Statistics Canada Business Register as of the last day of the reference year (including establishments active for a part of the reference year).
Instrument design
The survey questionnaire contains generic modules designed to cover several service industries. These include revenue and expense modules.
In order to reduce response burden, smaller firms receive a characteristics questionnaire (shortened version) that is industry-specific which does not include the revenue and expense modules. This shortened version is designed to collect both financial and non-financial characteristics, while revenue and expense data are extracted from administrative files.
Sampling
This survey is a census with a cross-sectional design.
Data sources
Data collection for this reference period: 2017-04-27 to 2017-10-27
Data are extracted from administrative files.
Data are collected primarily through electronic questionnaire, which can be responded to in either official language. Respondents also have the option of receiving a paper questionnaire, replying by telephone interview or using other electronic filing methods. Follow-up is conducted via email, telephone or fax and dynamically prioritized on the basis of weighted response rates and for data validation on discrepancies from predicted values.
Administrative data
A strategy to replace survey data with tax data has been introduced to reduce the response burden and survey costs. The strategy involves using tax data instead of survey data for most of the simple units (for example, a single location and a single activity).
As part of the Integrated Business Statistics Program (IBSP), T1 tax data are used for unincorporated businesses and T2 tax data for incorporated businesses. Data replacement may be used to correct outliers or to replace partially or completely missing data. Tax data may also be used to reconcile survey data.
Data integration combines data from multiple data sources including survey data collected from respondents, administrative data from the Canada Revenue Agency or other forms of auxiliary data when applicable. During the data integration process, data are imported, transformed, validated, aggregated and linked from the different data source providers into the formats, structures and levels required for IBSP processing. Administrative data are used in a data replacement strategy for a large number of financial variables for most small and medium enterprises and a select group of large enterprises to avoid collection of these variables. Administrative data are also used as an auxiliary source of data for editing and imputation when respondent data are not available.
View the Questionnaire(s) and reporting guide(s).
Error detection
Error detection is an integral part of both collection and data processing activities. Automated edits are applied to data records during collection to identify reporting and capture errors. These edits identify potential errors based on year-over-year changes in key variables, totals, and ratios that exceed tolerance thresholds, as well as identify problems in the consistency of collected data (e.g., a total variable does not equal the sum of its parts). During data processing, other edits are used to automatically detect errors or inconsistencies that remain in the data following collection. These edits include value edits (e.g., Value > 0, Value > -500, Value = 0), linear equality edits (e.g., Value1 + Value2 = Total Value), linear inequality edits (e.g., Value1 >= Value2), and equivalency edits (e.g., Value1 = Value2). When errors are found, they can be corrected using the failed edit follow up process during collection or via imputation. Extreme values are also flagged as outliers, using automated methods based on the distribution of the collected information. Following their detection, these values are reviewed in order to assess their reliability. Manual review of other units may lead to additional outliers identified. These outliers are excluded from use in the calculation of ratios and trends used for imputation, and during donor imputation. In general, every effort is made to minimize the non-sampling errors of omission, duplication, misclassification, reporting and processing.
Imputation
When there are non-reported tax data, or when reported data are considered incorrect during the error detection steps, imputation is used to fill in the missing information and modify the incorrect information. Many methods of imputation may be used to complete the administrative data, including manual changes made by an analyst. The automated, statistical techniques used to impute the missing data include deterministic imputation, replacement using historical data (with a trend calculated, when appropriate), replacement using auxiliary information available from other sources, replacement based on known data relationships for the sample unit, and replacement using data from a similar unit in the sample (known as donor imputation). Usually, key variables are imputed first and are used as anchors in subsequent steps to impute other, related variables.
Imputation generates a complete and coherent microdata file that covers all survey variables.
Estimation
The sample used for estimation comes from a single-phase sampling process. An initial sampling weight (the design weight) is calculated for each unit of the survey and is simply the inverse of the probability of selection that is conditional on the realized sample size. The weight calculated for each sampling unit indicates how many other units it represents. The final weights are usually either one or greater than one. Sampling units which are "Take-all" (also called "must-take") have sampling weights of one and only represent themselves.
Estimation of totals is done by simple aggregation of the weighted values of all estimation units that are found in the domain of estimation. Estimates are computed for several domains of estimation such as industrial groups and provinces/territories, based on the most recent classification information available for the estimation unit and the survey reference period. It should be noted that this classification information may differ from the original sampling classification since records may have changed in size, industry or location. Changes in classification are reflected immediately in the estimates.
When some enterprises have reported data combining many units located in more than one province or territory, or in more than one industrial classification, data allocation is required. Factors based on information from sources such as tax files and Business Register profiles are used to allocate the data reported on the combined report among the various estimation units where this enterprise is in operation. The characteristics of the estimation units are used to derive the domains of estimation, including the industrial classification and the geography.
Units with larger than expected size are seen as misclassified and their weight is adjusted so that they only represent themselves (large units found in a stratum of small units for example).
The weights can be modified and adjusted using updated information from taxation data. Using a statistical technique called calibration, the final set of weights is adjusted in such a way that the sample represents as closely as possible the taxation data of the population of this industry.
Quality evaluation
Prior to the data release, combined survey results are analyzed for comparability; in general, this includes a detailed review of individual responses (especially for the largest companies), general economic conditions and coherence with results from related economic indicators, historical trends, and information from other external sources (e.g. associations, trade publications or newspaper articles).
Disclosure control
Statistics Canada is prohibited by law from releasing any information it uses that could identify any person, business, or organization, unless consent has been given by the respondent or as permitted by the Statistics Act. Various confidentiality rules are applied to all data that are released or published to prevent the publication or disclosure of any information deemed confidential. If necessary, data are suppressed to prevent direct or residual disclosure of identifiable data.
In order to prevent any data disclosure, confidentiality analysis is done using the Statistics Canada Generalized Disclosure Control System (G-Confid). G-Confid is used for primary suppression (direct disclosure) as well as for secondary suppression (residual disclosure). Direct disclosure occurs when the value in a tabulation cell is composed of or dominated by few enterprises while residual disclosure occurs when confidential information can be derived indirectly by piecing together information from different sources or data series.
Revisions and seasonal adjustment
There is no seasonal adjustment for this survey. Data from previous years may be revised based on updated information.
Data accuracy
The methodology of this survey has been designed to control errors and to reduce their potential effects on estimates. However, the survey results remain subject to errors. Errors can arise from the various phases of a survey. For example, these types of errors can occur when a respondent provides incorrect information or does not answer certain questions; when a unit in the target population is omitted or covered more than once; when GST data for records being modeled for a particular month are not representative of the actual record for various reasons; when a unit that is out of scope for the survey is included by mistake or when errors occur in data processing, such as coding or capture errors.
Prior to publication, combined survey results are analyzed for comparability; in general, this includes a detailed review of individual responses (especially for large businesses), general economic conditions and historical trends.
- Date modified: