Annual Survey of Service Industries: Commercial and Industrial Machinery Equipment Rental and Leasing
Detailed information for 2005
Status:
Active
Frequency:
Annual
Record number:
2441
This survey collects the financial and operating data needed to produce statistics on the Commercial and Industrial Machinery and Equipment Rental and Leasing industry in Canada.
Data release - March 23, 2007
Description
This annual sample survey collects the financial and operating data needed to produce statistics on the Commercial and Industrial Machinery and Equipment Rental and Leasing industry in Canada. Commencing with reference year 2005, the survey also collects detailed information on the characteristics of the businesses, such as type of revenue and type of client.
These data are aggregated with information from other sources to produce official estimates of the national and provincial economic production of the Commercial and Industrial Machinery and Equipment Rental and Leasing Rental and Leasing industry in Canada. The results from this survey provide data to businesses, governments, investors and associations. These data allow these groups to monitor the growth of the industry, measure performance, allow comparison across similar businesses and to better understand this industry to react to trends and patterns.
The new 2005 survey covers a somewhat different set of businesses than in previous years so that data generally cannot be expected to be comparable. The list of names and addresses of businesses is now drawn from a central Statistics Canada data base. Also, a much more rigorous delineation of those companies that are considered part of the culture sector has been applied through the implementation of the North American Industry Classification System (NAICS). This industry-based classification is a departure from the activity-based classification that was used previously. In addition to these changes in coverage, commencing with 2005, the data are based on a sample of businesses.
Despite these changes, several data points for two earlier survey years have been produced so that key trends can still be determined. These data represent estimates of historical data that would have been produced using this new coverage and methodology for those years. This information is included in the 2005 data release.
Statistical activity
The survey is administered as part of the Unified Enterprise Survey program (UES). The UES program has been designed to integrate, gradually over time, the approximately 200 separate business surveys into a single master survey program. The UES aims at collecting more industry and product detail at the provincial level than was previously possible while avoiding overlap between different survey questionnaires. The redesigned business survey questionnaires have a consistent look, structure and content. The unified approach makes reporting easier for firms operating in different industries because they can provide similar information for each branch operation. This way they avoid having to respond to questionnaires that differ for each industry in terms of format, wording and even concepts.
This survey is part of the Service Industries Program. The survey data gathered are used to compile aggregate statistics for over thirty service industry groupings. Financial data, including revenue, expense and profit statistics are available for all of the surveys in the program. In addition, many compile and disseminate industry-specific information.
Reference period: Calendar year
Subjects
- Business, consumer and property services
- Business performance and ownership
- Financial statements and performance
- Rental and leasing and real estate
Data sources and methodology
Target population
The target population consists of all statistical establishments (sometimes referred to as firms or units) classified as Commercial and Industrial Machinery and Equipment Rental and Leasing (NAICS 5324) according to the North American Industry Classification System 2002 (NAICS 2002) during the reference year. The Commercial and Industrial Machinery Equipment and Rental sector covers three NAICS 2002: Construction, Transportation, Mining and Forestry Equipment Rental and Leasing Rental (NAICS 53241), Office Machinery and Equipment Rental and Leasing (NAICS 53242) and Other Commercial and Industrial Machinery and Equipment Rental and Leasing (NAICS 53249).
The Commercial and Industrial Machinery and Equipment Rental and Leasing survey covers establishments primarily engaged in renting or leasing commercial and industrial machinery and equipment, without operator. The types of establishments included in this industry group are generally involved in providing capital/investment-type equipment that clients use in their business operations. These establishments typically serve businesses and do not generally operate a retail-like or store-front facility.
The financing arm of the commercial and industrial machinery and equipment rental and leasing industry is excluded from this survey. Data for these companies are found in NAICS 52222 because of their sales financing activities.
Sampling
This is a sample survey with a cross-sectional design.
The frame is the list of establishments from which the portion eligible for sampling is determined and the sample is taken. The frame provides basic information about each firm including: address, industry classification and information from administrative data sources. The frame is maintained by Statistics Canada's Business Register and is updated using administrative data.
The target population consists of all statistical establishments (sometimes referred to as firms or units) classified to this industry according to the North American Industry Classification System (NAICS) during the reference year observed.
The basic objective of the survey is to produce estimates for the whole industry - incorporated and unincorporated businesses. The data come from two different sources: a sample of all businesses with revenue above or equal to a certain threshold (note: the threshold varies between surveys and sometimes between industries and provinces in the same survey) for which either survey or administrative data may be used; and administrative data only for businesses with revenue below the specified threshold. It should be noted that only financial information is available from businesses below the threshold; e.g., revenue, and expenses such as depreciation and salaries, wages and benefits. Characteristics such as client base and revenue by type of service are collected only for surveyed establishments.
Prior to the selection of a random sample, establishments are classified into homogeneous groups (i.e., groups with the same NAICS codes and same geography (province/territory)). Quality requirements are targeted, and then each group is divided into sub-groups called strata: take-all, must-take, and take-some.
The take-all stratum represents the largest firms in terms of performance (based on revenue) in an industry. The must-take stratum is comprised of units selected on the basis of complex structural characteristics (multi-establishment, multi-legal, multi-NAICS, or multi-province enterprises). All take-all and must-take firms are selected to the sample. Units in the take-some strata are subject to simple random sampling.
The effective sample size for reference year 2005 was 473 collection entities.
Data sources
Data collection for this reference period: 2006-01-16 to 2006-10-13
Responding to this survey is mandatory.
Data are collected directly from survey respondents and extracted from administrative files.
Data are collected through a mail-out/mail-back process, while providing respondents with the option of telephone or other electronic filing methods.
Follow-up procedures are applied when a questionnaire has not been received after a pre-specified period.
View the Questionnaire(s) and reporting guide(s).
Error detection
Data are examined for inconsistencies and errors using automated edits coupled with analytical review. Where possible, data will be verified using alternate sources.
Imputation
Where information is missing, imputation is performed using a "nearest neighbour" procedure (donor imputation), using historical data where available, using averages based on responses from a set of similar establishments, or using administrative data as a proxy for reported data.
Estimation
As part of the estimation process survey data are weighted and combined with administrative data to produce final industry estimates.
Quality evaluation
Prior to dissemination, combined survey results are analyzed for comparability. In general, this includes a detailed review of individual responses (especially for the largest companies), general economic conditions, historic trends, and comparisons with other data sources.
Disclosure control
Statistics Canada is prohibited by law from releasing any information it collects which could identify any person, business, or organization, unless consent has been given by the respondent or as permitted by the Statistics Act. Various confidentiality rules are applied to all data that are released or published to prevent the publication or disclosure of any information deemed confidential. If necessary, data are suppressed to prevent direct or residual disclosure of identifiable data.
Revisions and seasonal adjustment
There is no seasonal adjustment. Data from previous years may be revised based on updated information.
Data accuracy
While considerable effort is made to ensure high standards throughout all stages of collection and processing, the resulting estimates are inevitably subject to a certain degree of error. These errors can be broken down into two major types: non-sampling and sampling.
Non-sampling error is not related to sampling and may occur for many reasons. For example, non-response is an important source of non-sampling error. Population coverage, differences in the interpretation of questions, incorrect information from respondents, and mistakes in recording, coding and processing data are other examples of non-sampling errors.
Of the sampled units contributing to the estimate the weighted response rate was 78%.
Sampling error occurs because population estimates are derived from a sample of the population rather than the entire population. Sampling error depends on factors such as sample size, sampling design, and the method of estimation. An important property of probability sampling is that sampling error can be computed from the sample itself by using a statistical measure called the coefficient of variation (CV). The assumption is that over repeated surveys, the relative difference between a sample estimate and the estimate that would have been obtained from an enumeration of all units in the universe would be less than twice the CV, 95 times out of 100. The range of acceptable data values yielded by a sample is called a confidence interval. Confidence intervals can be constructed around the estimate using the CV. First, we calculate the standard error by multiplying the sample estimate by the CV. The sample estimate plus or minus twice the standard error is then referred to as a 95% confidence interval.
The qualities of CVs are rated as follows:
. Excellent 0.01% to 4.99%
. Very good 5.00% to 9.99%
. Good 10.00% to 14.99%
. Acceptable 15.00% to 24.99%
. Use with caution 25.00% to 34.99%
. Unreliable 35.00% or higher
CVs were calculated for each estimate. Survey specific summary of the ratings of CVs for major variables. The CVs are available upon request.
- Date modified: